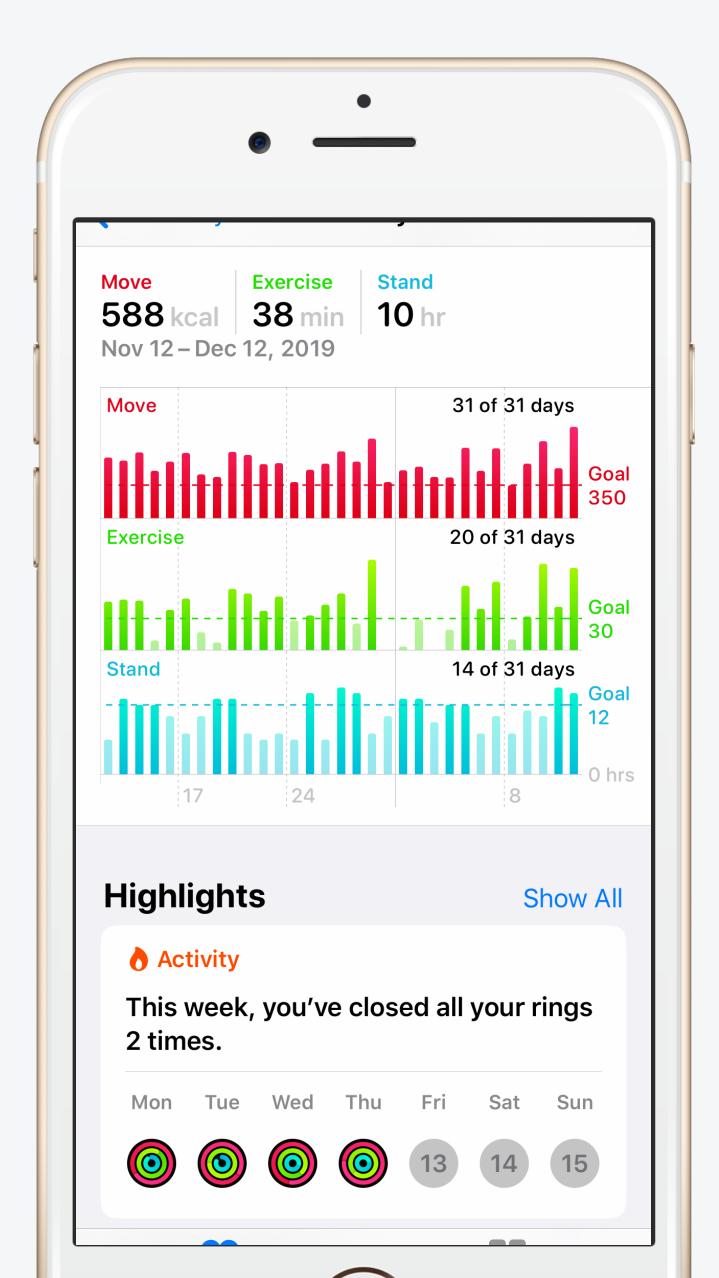
Building a Better Workout Routine

BY MUSANGI MUSANGI SYRACUSE UNIVERSITY / WHITMAN SCHOOL OF MANAGEMENT / FALL 2019

MBC 638 DMAIC PROJECT

EXECUTIVE SUMMARY


Shorten time at the gym, maximize Move goal

For this upcoming quarter, we wanted to focus on improving our workout routine to shorten time in the gym, maximize progress towards daily move goals and reap the health benefits of increased energy needed to tackle a busy schedule.

It's predicted that time savings from less time at the gym and the associated increase in energy could free up about 5 hours a week of productive time. Leading a freelance digital project or UX workshop that requires a 20 hour investment each month, for example, is estimated to be worth \$2,500 in additional revenues per quarter.

We wanted to target the following in terms of measuring success of a streamlined workout process:

- Track and compare number of days all Activity rings (Move kcal, Stand hrs and Exercise min) were closed using the old vs new workout processes
- Identify the impact of different workout types on daily calorie goals (Move)
- Gain insights to select more effective workouts that reduce time at the gym while increasing effectiveness of each workout
- Confidently raise our daily Move goal from 350 to 450 kcal based on effectiveness of the new process

Define y = f(x)

Our y = f(x) had y as the Move data point where x consisted of several variables measuring exercise time and workout type.

Setup the hypothesis (a = 0.10)

H0: Shorter, higher intensity workouts will have no effect on Move goals when compared to regular full-length cardio workouts. ($\mu_1 = \mu_2$)

Ha: Shorter, higher intensity workouts will have a positive impact on daily Move goals when compared to regular full-length cardio workouts. ($\mu_1 < \mu_2$)

Kickoff the project

Created a problem definition worksheet that outlines the problem, business impact and project timeline.

Collect the data

- 15 min cardio session on an elliptical machine (reduced from 45 min in WP1)
- 10-15 min of strength training
- 10-15 min modified yoga using seated poses and the sauna when available

Refine and measure

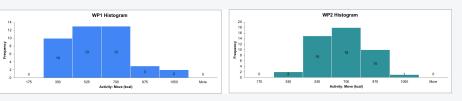
45 days of Activity data collected for 8.31 to 10.15 (WP1) and 10.16 to 11.30 (WP2).

Performance measures: Move goal achieved (kcal = 350); # of Activity rings closed; and, % of days all three Activity rings were closed • —

Move Exercise Stand 588 kcal 38 min 10 hr

ատեր litatelitiotheesticati

Activity This week, you've closed all your rings 2 times.


O O O O 13 14 15

 \bigcirc

/orkout	10:09	Cancel 10:09	÷
Outdoor Walk OPEN GOAL		Change your daily Move goal	
\$	•	- 450 +	
itdoor Run PEN GOAL		Calories	Move 593/350CAL
5		Update	1202 400 1210 1210 1010

Answer the	
-------------------	--

- only

Reject H₀

were strongly correlated and had a statistically significant impact on the y

va	riable, Mov	ve, at a :	= 0.10.		
		P-values for W	P1 & WP2 Relative to α =	= 0.1	
1		0.536261588	torstoos Yoga 1 — WP2 — Alpha	0.94152818 0.915555009 Walking	0.9 0.33031114 e+0.1 Elliptical

DEFINE

Given an increasingly busy schedule, we wanted to find a way to meet our Move target, setup an ongoing process to reduce workout time and raise the daily Move goal from 350 to 450 kcal.

MEASURE

We leveraged data from an Apple iWatch worn daily to understand how a shift in the workout process could address our issues. iWatch data was extracted using the Apple Health app.

ANALYZE

questions with

Does a shorter, higher intensity workout have an impact on the Move goal? Yes Which workout type had the most impact on the Move goal? Strength and Yoga • Which workout type, or mix, has the most potential for Move = 450 kcal? Elliptical

>>

Ż

Exercise time, strength training and yoga

Predicting y

For our regression formula y = b0 + b1x1 + b1x1b2x2 + b3x3 + b4x4 + b5x5, we used the following values to predict several possible scenarios for the future: y = 391.97 +7.25x1 -76.84x2 - 68.08x3 - 7.72x4 + 19.10x5



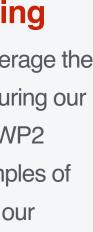
Resetting the bar

We feel confident that this new process allows us to raise the daily Move goal from 350 kcal to 450 kcal given any number of scenarios above, and with Exercise time remaining constant at 30 min or more.

Keep the process moving

For the Control phase, we will leverage the Xbar/R and IMR charts created during our time series analysis of WP1 and WP2 performance. We would take samples of data throughout the year and run our statistical analysis again.

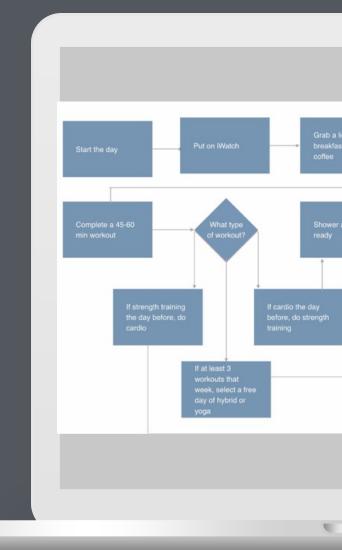
Exercise time of 30+ min with any single workout or mix of workouts was the strongest predictor of Move goal success. Strength training and yoga also had a statistically significant impact on the Move goal.


IMPROVE

Even though we didn't have scope to improve the process beyond the WP2 findings, we were able to gain some valuable insights and identify some process optimization scenarios for the future.

CONTROL

Our goal is to make the data extraction process from the hoalth ann more streamlined riodiar app more of our minee so we can eventually move from manual data entry and analysis to automated dashboard.



DEEP DIVE ANALYSIS

HOW WE REENGINEERED THE PROCESS

Workout Process 1

Cardio (

45 min cardio session on an incline treadmill

10-15 min of strength training

To measure whether shorter, higher intensity workouts would have an impact on solving our current workout issues, we modified the workout process (WP2) to shorten cardio time from 45 min to 15 min.

10-15 modified yoga using seated poses and the sauna when available

Image: Construction Image: Construction

10-15 min of strength training

10-15 modified yoga using seated poses and the sauna when available

The what and how of our measurement strategy

For this workout improvement project, we how a shift in the workout process could leveraged data from an Apple iWatch that is address our issues of time management, goal worn daily during waking hours to understand attainment and available energy.

Data sources

iWatch data is entered into Excel from the Apple Health app installed on iPhone

47

How is data collected

Apple iWatch worn daily will share data with the Health app on iPhone for retrieval

Who collects the data

Watch needs to be put on for automatic data collection to occur and wearer needs to start/stop workouts to record workout-specific data

Performance measures

• Move goal achieved (kcal = 350)

• # of Activity rings closed

• % of days all three Activity rings

were closed

Target sample size

45 days of Activity data for 8.31 to 10.15 (WP1) and 10.16 to 11.30 (WP2)

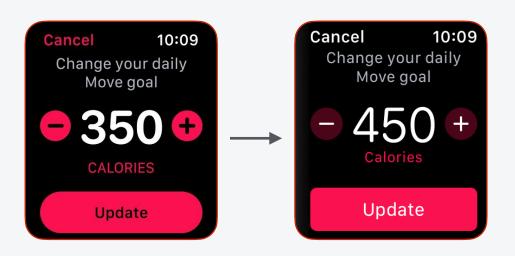
When is data collected

Data is automatically collected throughout the day as long as the iWatch is worn, and provided that workouts are started/stopped by the wearer for better data coding and analysis

WHAT WE WANTED TO MEASURE

000 Questions about the process 000

Does a shorter, higher intensity workout have an impact on the Move goal versus workouts with a longer cardio set?


Which workout type has the most impact on the Move goal?

Which workout type, or mix, has the most potential to help us meet an elevated Move target (kcal = 450) in the future?

4

Activity: Move (kcal)

The current set goal is kcal = 350with the objective of eventually increasing the above goal to kcal = 450.

Y = F(X)

The output y

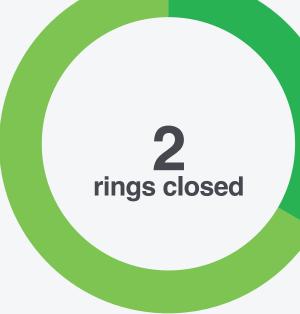
Note: After an initial regression analysis, average heartrate was removed since it had no impact on Move goal. The remainder of this deck uses analysis based on the X variables listed above sans average heartrate.)

THE HIGHLIGHTS

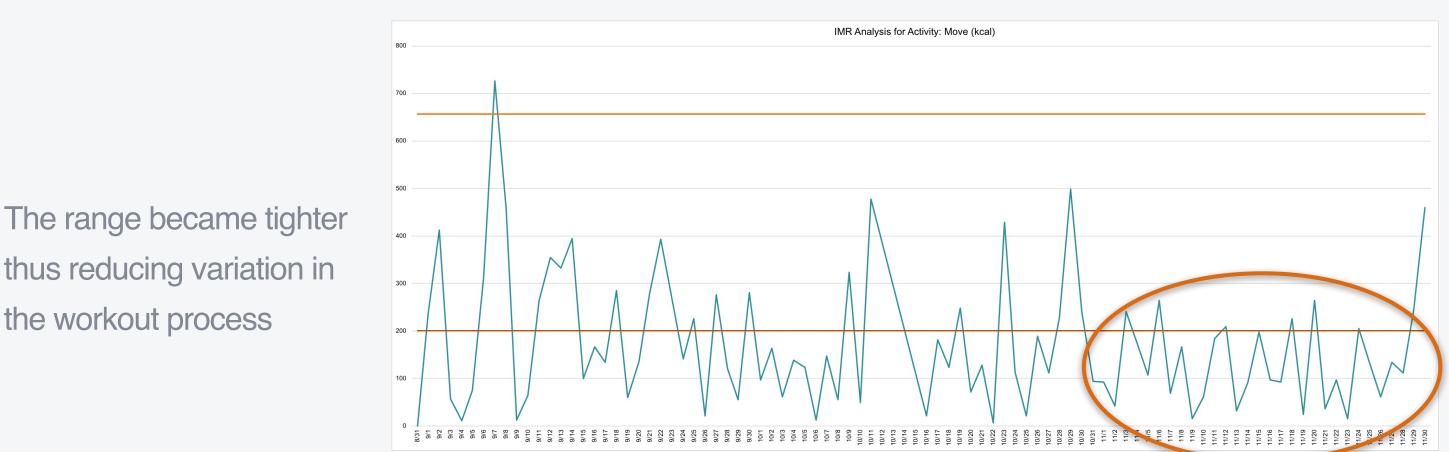
Trend Analysis

Since cardio was the largest portion of time spent, we started with the goal of reducing time for that particular x variable. We then established a data measurement plan that would answer key questions of interest.

As a result, we observed a number of favorable upward trends when analyzing central tendency for WP1 versus WP2.

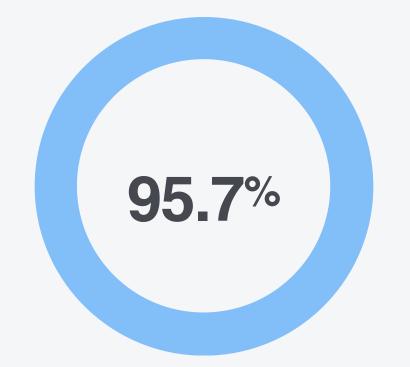

The mean Move measurements increased to 574.8 kcal to 495.7 kcal

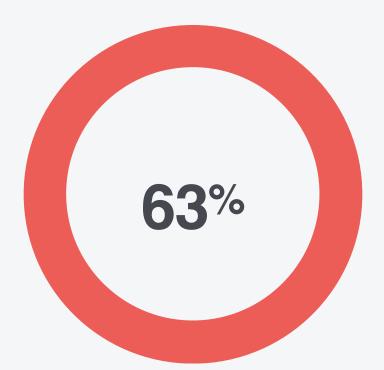
thus reducing variation in the workout process



The median Move measurements also increased (499.0 to 588.5)

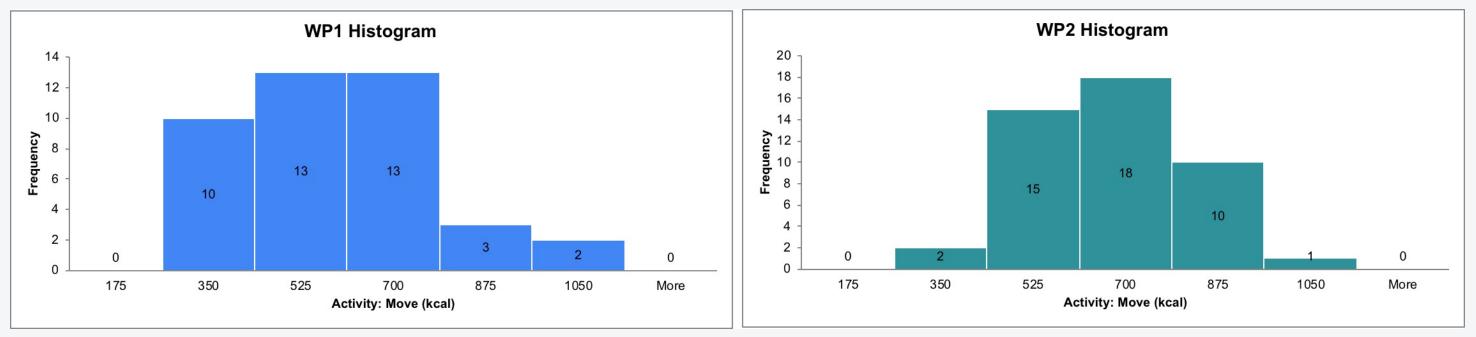
Average number of Activity rings closed moved from 1 ring closed to 2 rings closed





HOW OFTEN ACTIVITY RINGS WERE CLOSED

The percent of days with the Move ring closed increased to 95.7% from 78.0%...



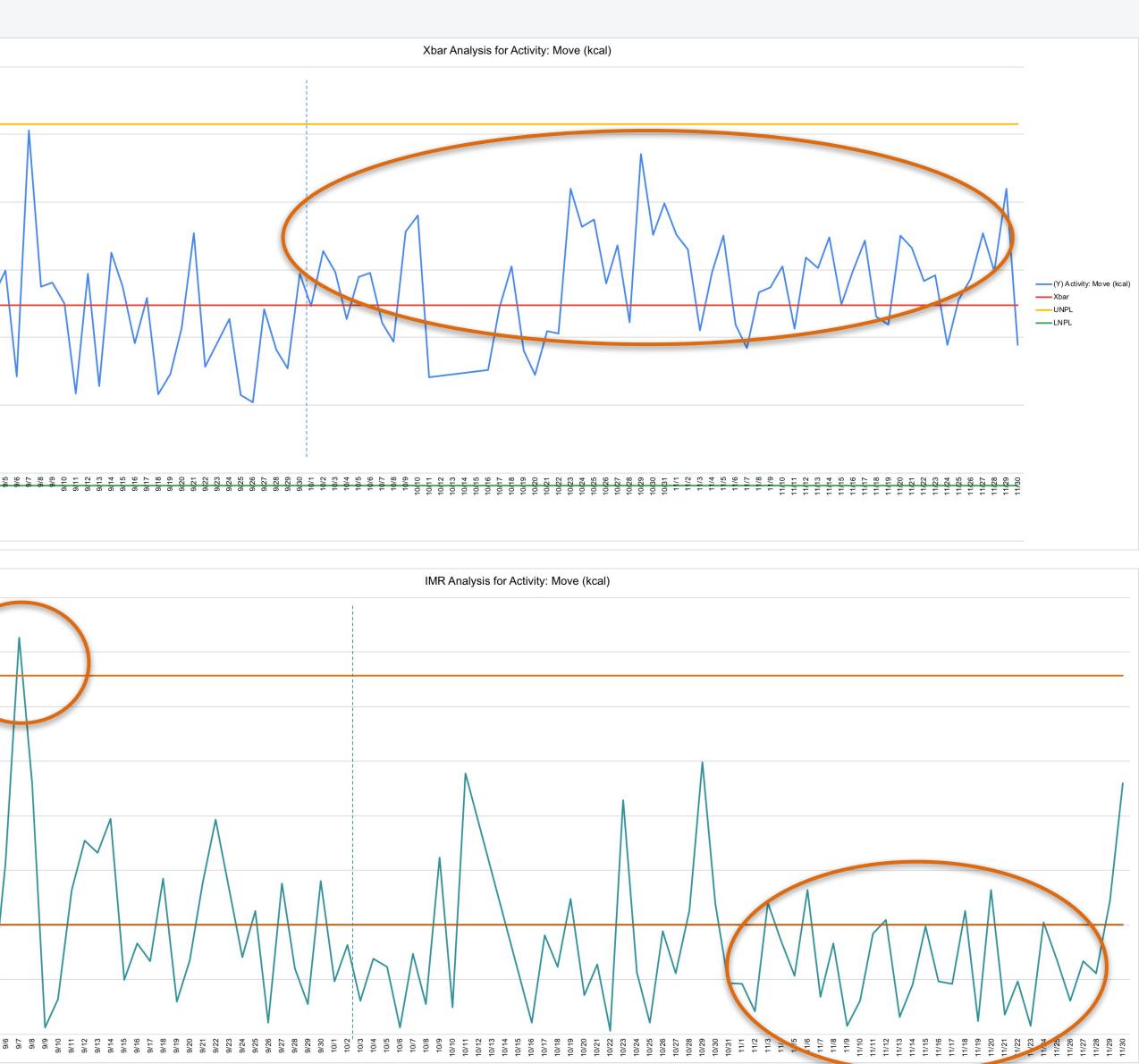
...And the Exercise ring increased from 39% to 63%, a nearly 50% increase

There's still work to do in closing all the rings, but we did observe a rate increase from 14.6% to 15.2%...

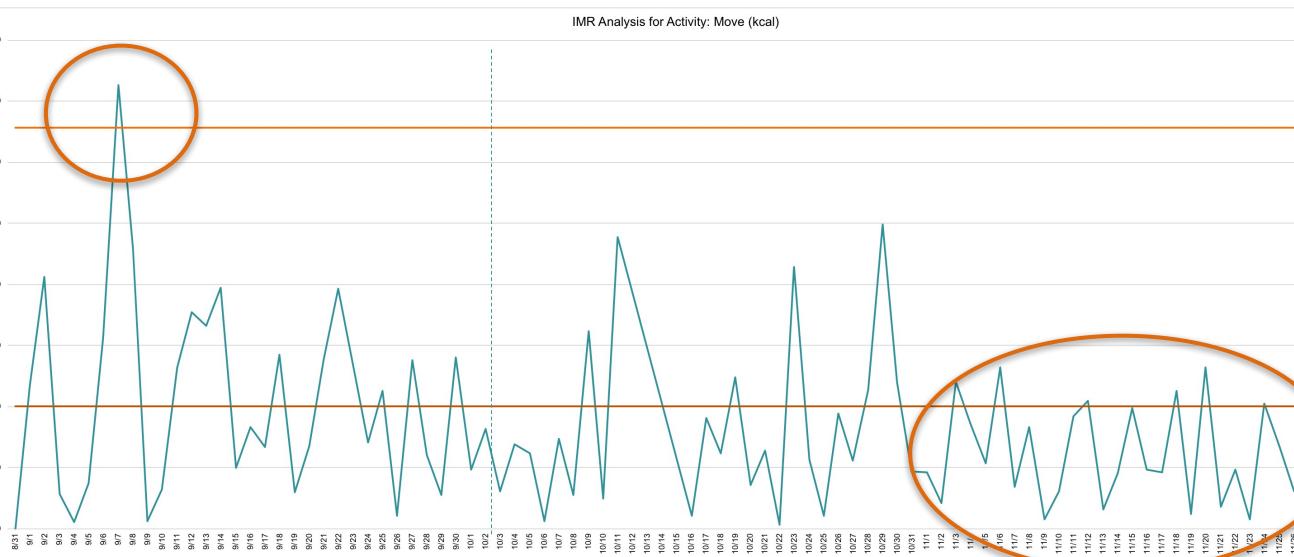
15.2%

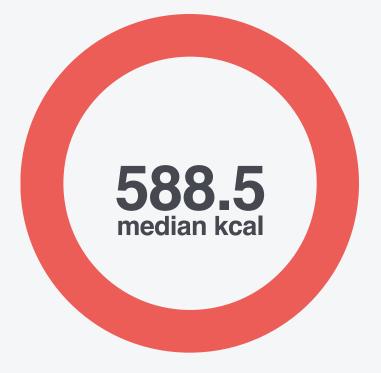
...And overall, the Move measure skewed further to the right with a majority of values falling in a range above 525 kcal, indicating a strong probability of closing the Move ring more consistently moving forward

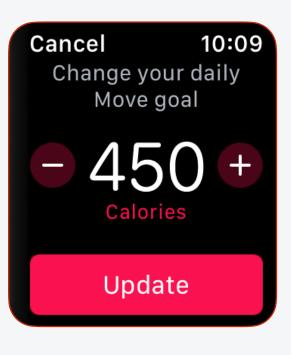
12:00

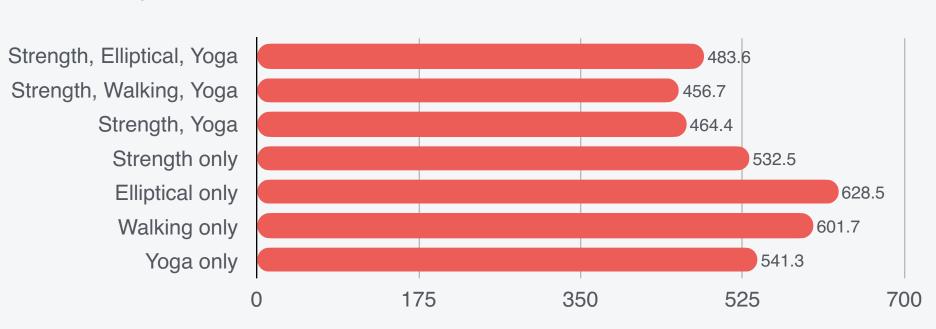

Time Series Analysis

After we implemented WP2, we observed the data points trending slightly up with most falling above the mean or much closer to it than in WP1.


While the process was mostly under control in W1, there is a data point that exceeds the UCL.


Data also had much larger variations versus WP2 from point to point. While still random, there is less variation from point to point suggesting this new process is more predictable than the original workout process.




Trending Up

The new process displays a trend towards consistently higher Move data points.

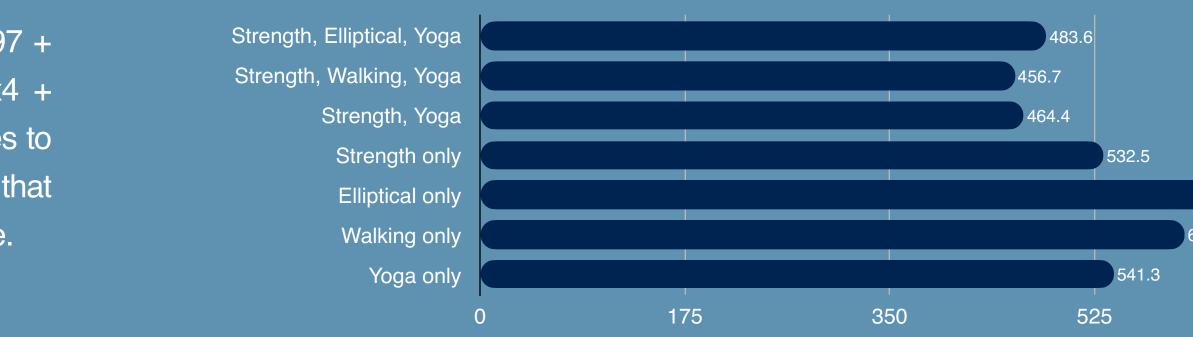
Raising the Bar

This trend suggests we've found a process that could enable us to successfully raise our Move goal from 350 kcal to 450 kcal without sacrificing Move success rate.

y = 391.97 + 7.25*x*1 -76.84*x*2 - 68.08*x*3 - 7.72*x*4 + 19.10*x*5

Predicting The Future

When using our regression formula to explore several scenarios, all scenarios have the potential to get us to the 450 kcal Move goal.



Even though we didn't have scope to improve the process beyond the findings from WP2, we were able to gain some valuable insights and identify some process optimization scenarios for the future.

For our regression formula y = 391.97 +7.25x1 - 76.84x2 - 68.08x3 - 7.72x4 + 19.10x5, we used the following values to predict several possible scenarios that can be explored in the Improve phase.

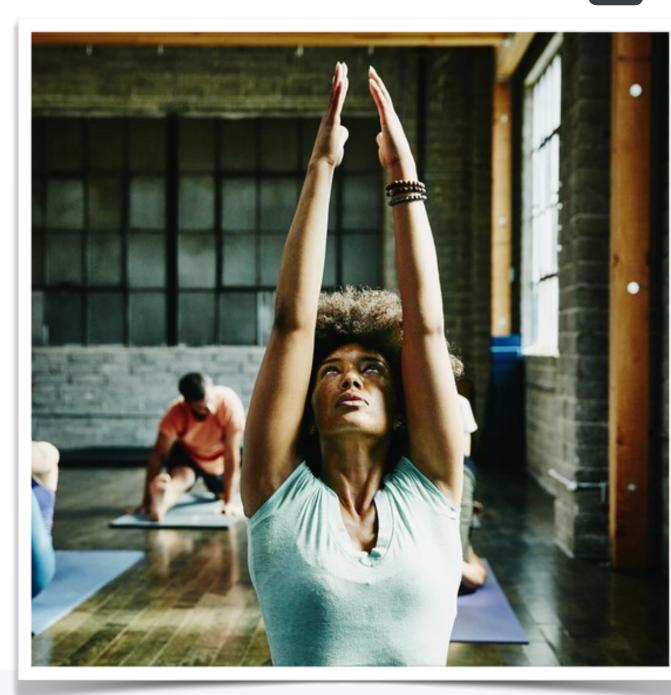
We feel confident that this new process allows us to raise the daily Move goal from 350 kcal to 450 kcal given any number of scenarios described previously, and with Exercise time remaining constant at 30 min or more.

628.5

601.7

LOOKING AHEAD

IMPROVING FOR THE FUTURE



Get Moving

Shorter workouts also make working out more approachable ensuring we're consistently moving and staying active most, if not all, days in a week.

Go for 10

Since we are meeting, and often exceeding, our daily Exercise goal of 30 min, we could explore reducing the cardio even further from 15 min to 10 min and then measure whether we're still attaining positive Activity results consistently.

Move to 450

Our regression analysis shows that with this new process, we should be able to consistently meet a higher Move target (kcal = 450) and then measure our process management at a subsequent control interval.

Stay Motivated

We should also explore other forms of cardio to keep workouts interesting, and measure how well those workout types contribute to the overall process.

WHAT ELSE WE COULD EXPLORE

Wellness Impact

Is there an impact to overall movement during the day (e.g., stand goal) on workout vs. nonworkout days

Target Heart Rate

Which workout type has the most potential to meet the target heart rate goal for the workout duration?

Daily Steps

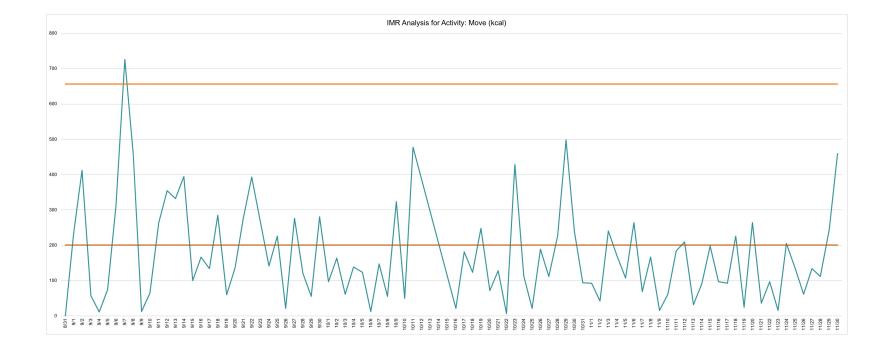
Do the number of steps throughout the day (workout and non-workout days) have an impact on the Move goal?

We achieved an overall positive business impact by fixing the current workout process over the course of this project. The Control phase will be key to staying on track for the long term.

Working Smarter

Gained the aility to select more effective workouts that reduce time at the gym while increasing effectiveness of each workout.

Wellness

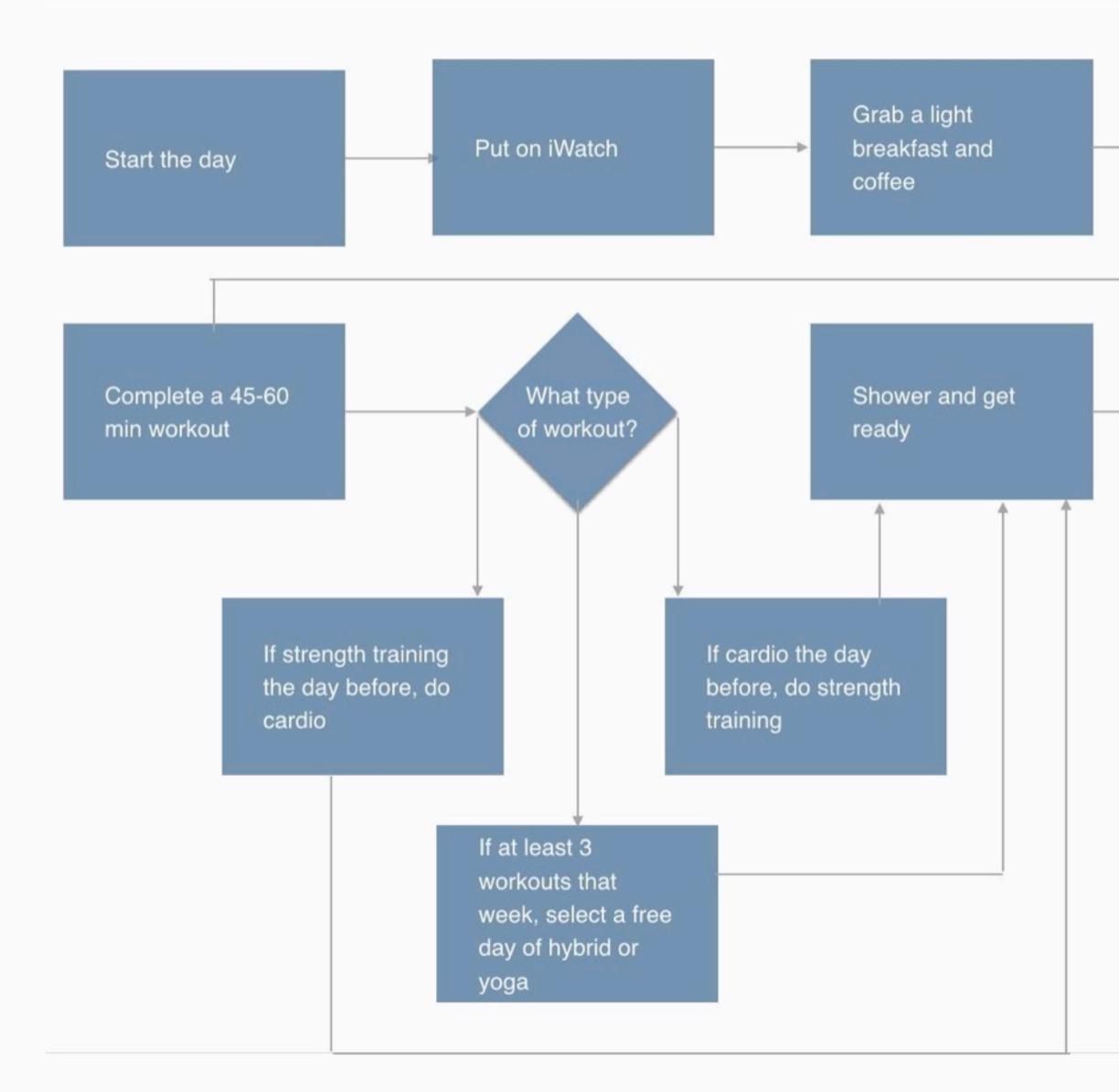

Continue to achieve health benefits attained by working out more consistently and meeting the health targets established for this project.

Enable Continuous Improvement

Moving forward, we will continue to implement our revamped WP2 process, and continue obtaining daily Activity data. To make the measurement process simple, we could take 30 days of data at the end of Q2 and Q4 to see if the process is continuing as expected, and assess whether one of our test scenarios has a significant enough impact that it warrants consideration as part of a WP3 refined process.

Data Export Challenges

Currently, there is no simple process for converting the XML export of Apple Health data to a readable Excel files consistently.

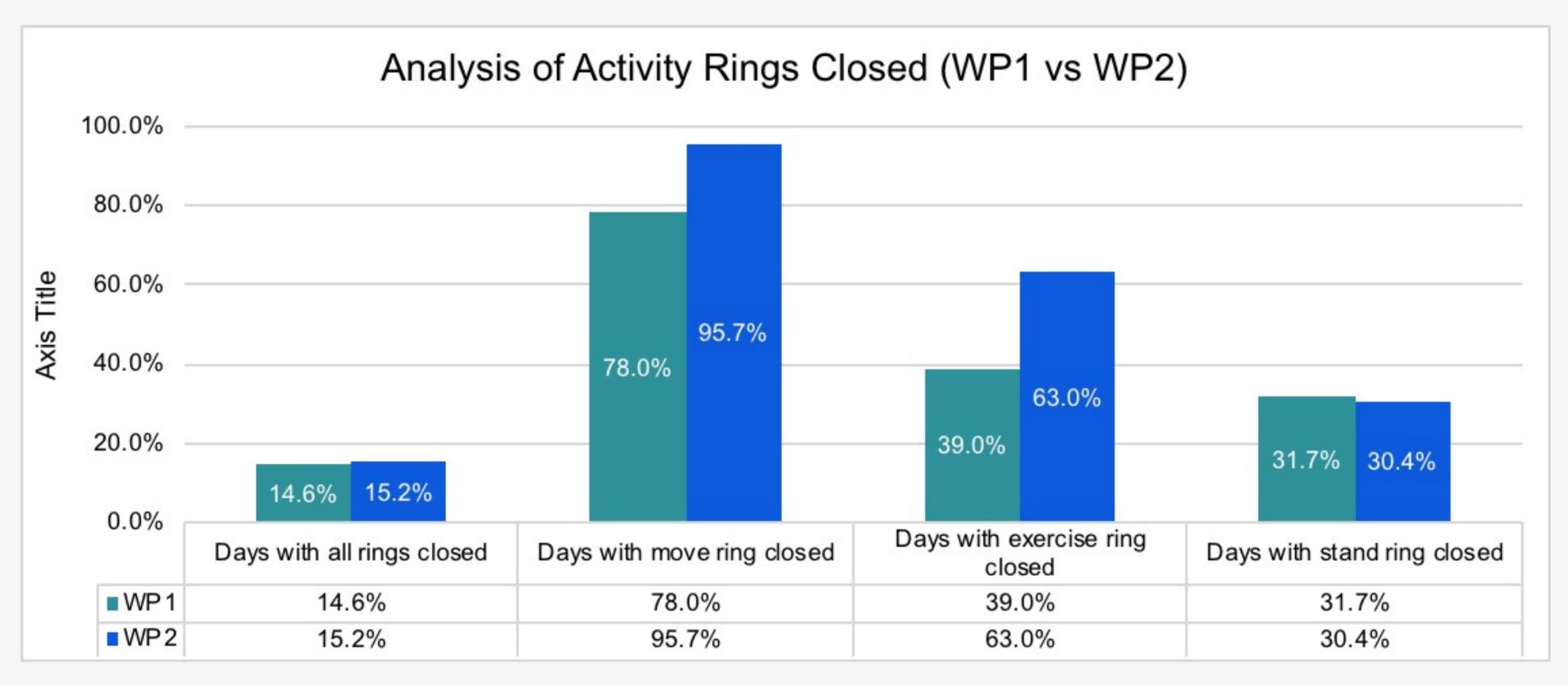


Process Flow

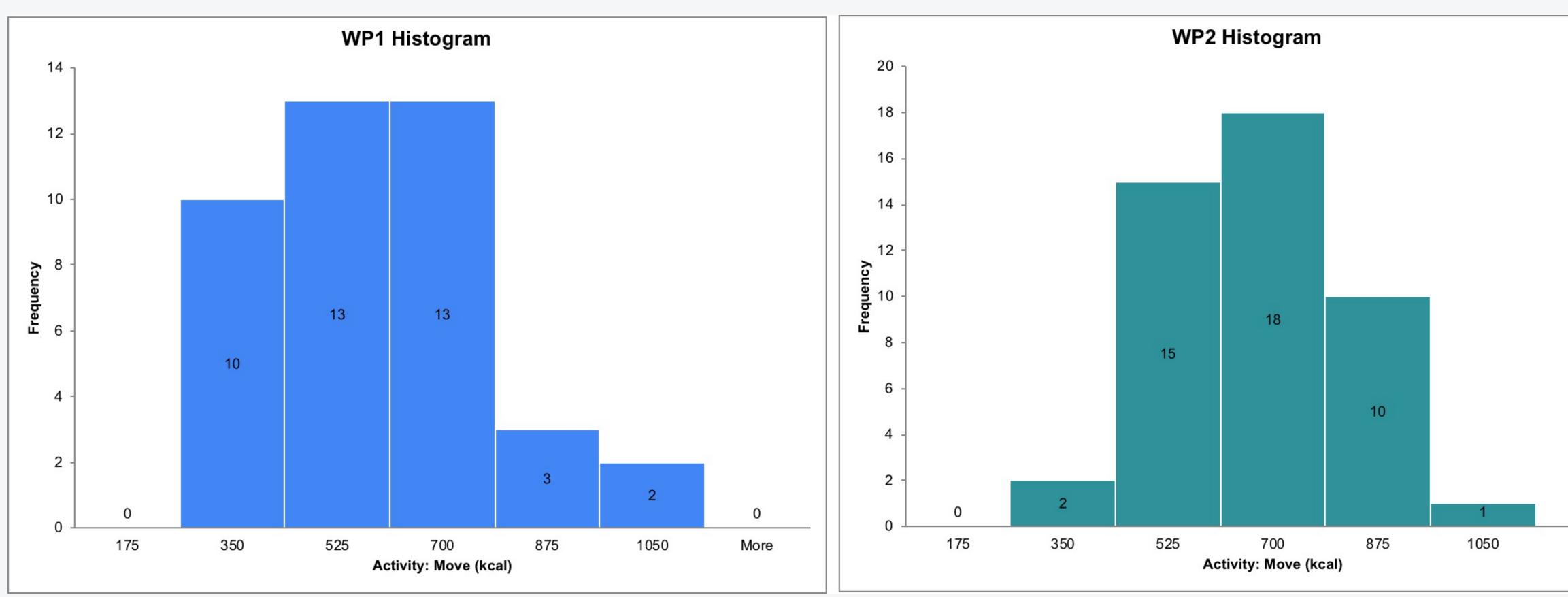
Check the news and email

Plan the flow of tasks and activities for the day

Travel to the gym


Travel to first activity or errand of the day Check on Move goals throughout the day Check on end of day progress and remove iWatch

SUMMARY ANALYSIS



WP1	Mean	Median	Mode	Min	Max	Range
Activity: Move (kcal)	495.7	499.0	589.0	208.0	1011.0	803.0
Activity: Exercise (min)	30.5	21.0	12.0	0.0	117.0	117.0
Activity: Stand (hrs)	10	10	8	3	17	14
Workout Avg Heartrate	114	115	115	96	136	40
# of Rings Closed	1	2	2	0	3	3
WP2	Mean	Median	Mode	Min	Max	Range
Activity: Move (kcal)	574.8	588.5	437.0	290.0	942.0	652.0
Activity: Exercise (min)	31.9	36.0	12.0	0.0	86.0	86.0
Activity: Stand (hrs)	10	11	11	4	17	13
Workout Avg Heartrate	121	119	112	100	145	46
# of Rings Closed	2	2	2	0	3	3

HISTOGRAMS

WP1 Histogr	ram Data
0	Frequency
175	0
350	10
525	13
700	13
875	3
1050	2
More	0

WP2 Histogr	ram Data
0	Frequency
175	0
350	2
525	15
700	18
875	10
1050	1
More	0

TIME SEIES ANALYSIS

Summary		
	wp1	wp2
Avg Activity: Mo	495.6829268	574.826087
Avg mR	200.825	151.8222222
UNPL	1029.877427	978.6731981
LNPL	-38.51157317	170.9789758
URL	656.69775	496.4586667

WP1								
SUMMARY C	DUTPUT							
Regressior	n Statistics							
Multiple R	0.84376042							
R Square	0.71193165							
Adjusted R S	0.67077903							
Standard Err	104.318851							
Observations	41							
ANOVA								
ANOVA	df	SS	MS	F	Significance F			
Regression	df 5	SS 941318.082	<i>MS</i> 188263.616	F 17.2997889	Significance F 1.3175E-08			
	4.1	941318.082	-		ě.			
Regression	5	941318.082 380884.796	188263.616		ě.			
Regression Residual	5 35	941318.082 380884.796	188263.616		ě.			
Regression Residual	5 35 40	941318.082 380884.796	188263.616 10882.4227		ě.		Lower 90.0%	Upper 90.0%
Regression Residual	5 35 40	941318.082 380884.796 1322202.88 Standard Erro	188263.616 10882.4227	17.2997889 <i>P-value</i>	1.3175E-08 Lower 95%	Upper 95%	<i>Lower 90.0%</i> 272.973493	
Regression Residual Total Intercept	5 35 40 <i>Coefficients</i> 336.896429	941318.082 380884.796 1322202.88 Standard Erro	188263.616 10882.4227 <i>t Stat</i> 8.90464299	17.2997889 <i>P-value</i> 1.6107E-10	1.3175E-08 Lower 95% 260.089744	<i>Upper 95%</i> 413.703114		400.819365
Regression Residual Total Intercept	5 35 40 <i>Coefficients</i> 336.896429 5.40209696	941318.082 380884.796 1322202.88 Standard Erro 37.833794	188263.616 10882.4227 <i>t Stat</i> 8.90464299 8.72941371	17.2997889 <i>P-value</i> 1.6107E-10 2.617E-10	1.3175E-08 Lower 95% 260.089744 4.14578809	<i>Upper 95%</i> 413.703114 6.65840583	272.973493 4.35652454	400.819365 6.44766938
Regression Residual Total Intercept Activity: Exer	5 35 40 <i>Coefficients</i> 336.896429 5.40209696	941318.082 380884.796 1322202.88 Standard Erro 37.833794 0.61883846 106.235198	188263.616 10882.4227 <i>t Stat</i> 8.90464299 8.72941371 -0.7292208	17.2997889 <i>P-value</i> 1.6107E-10 2.617E-10	1.3175E-08 1.3175E-08 <i>Lower 95%</i> 260.089744 4.14578809 -293.13784	<i>Upper 95%</i> 413.703114 6.65840583	272.973493 4.35652454 -256.96098	400.819365 6.44766938
Regression Residual Total Intercept Activity: Exer Strength	5 35 40 <i>Coefficients</i> 336.896429 5.40209696 -77.468919	941318.082 380884.796 1322202.88 Standard Erro 37.833794 0.61883846 106.235198 114.405261	188263.616 10882.4227 <i>t Stat</i> 8.90464299 8.72941371 -0.7292208 0.62463514	17.2997889 <i>P-value</i> 1.6107E-10 2.617E-10 0.47071866	1.3175E-08 1.3175E-08 <i>Lower 95%</i> 260.089744 4.14578809 -293.13784	<i>Upper 95%</i> 413.703114 6.65840583 138.199998 303.716575	272.973493 4.35652454 -256.96098	400.819365 6.44766938 102.023145 264.757525

WP2							
SUMMARY C	DUTPUT						
Regressior	n Statistics						
Multiple R	0.86822874						
R Square	0.75382115						
Adjusted R S	0.72304879						
Standard Err	79.4341041						
Observations	46						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	5	772843.5327	154568.707	24.4966992	3.2986E-11		
Residual	40	252391.076	6309.7769				
Total	45	1025234.609					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90.0%
Intercept	391.986074	21.56740744	18.1749278	6.1836E-21	348.396718	435.57543	355.669773
Activity: Exer	7.24610494	1.059556238	6.83881108	3.1464E-08	5.1046619	9.38754798	5.46197009
Strength	-76.837257	35.24999853	-2.1797804	0.03521898	-148.08016	-5.5943529	-136.193
_Yoga	-68.083701	37.31817782	-1.8244112	0.07556597	-143.50655	7.33915011	-130.92195
Walking	-7.7183101	72.15782734	-0.1069643	0.91535201	-153.55472	138.118099	-129.22134
Elliptical	19.1031578	40.09893502	0.47640063	0.63638111	-61.939813	100.146129	-48.417475

_	
_	
_	
_	
%	Upper 90.0% 428.302375
3	428.302375
9	9.03023978
3	-17.481512
5	-5.2454491
4	113.784721
5	86.6237902

SCENARIO MODELS

y = *3*91.97 + 7.25*x*1 - *7*6.84*x*2 - *6*8.08*x*3 - 7.72*x*4 + 19.10*x*5

WP2	Equation Variable	Regression Value	Scenario 1	Scenario 2	Scenario 3	Scen
Intercept	b0	391.986074	-	-		
Activity: Exercise (min	b1	7.246104939	30	30	30	
Strength	b2	-76.83725746	1	1	1	
_Yoga	b3	-68.08370068	1	1	1	
Walking	b4	-7.718310064		1		
Elliptical	b5	19.10315782	1			
	y = b0 + b1x1 + b2x	2 + b3x3 + b4x4 + b5x5				

ANALYSIS DATA

	m	Y) Activity:						Lag	Lagge ged Output residu		(X) Activity:					Workout Avg Heartrat	Activity: Stan	d Ring Closed:	Ring Closed:	Ring Closed:		
vi i.e. i.e. <	Mo						bar	URL (x)				Elliptical	Strength	Yoga		е	·				# of Rings Close	
min min </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>000.005</td> <td></td> <td></td> <td>-</td> <td>5</td> <td>6</td> <td>0</td> <td>1 1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td>0</td> <td>2 67%</td>							000.005			-	5	6	0	1 1	1			1	1		0	2 67%
m M												•	0	1 1	1			9	1 (ו ז	0	3 100% 1 33%
mm <td></td> <td>3</td> <td>5</td> <td>0 7</td> <td>1 1</td> <td>1</td> <td></td> <td></td> <td>5</td> <td>1</td> <td>, I</td> <td>1</td> <td>3 100%</td>											3	5	0 7	1 1	1			5	1	, I	1	3 100%
m m												5	0	1 1	1			7	1 ()	1	2 67%
wish	/5	597	495.6829268	1029.877427	-38.51157317	75	200.825	656.69775	522		7	6	0	1 1	1	115	5 1	0	1	1	0	2 67%
nd bit bit <td>/6</td> <td>285</td> <td></td> <td></td> <td></td> <td>312</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>0</td> <td>1 1</td> <td>1</td> <td>115</td> <td>;</td> <td>8</td> <td>0 0</td> <td>)</td> <td>0</td> <td>0 0%</td>	/6	285				312						4	0	1 1	1	115	;	8	0 0)	0	0 0%
mm mm mm <													0	1 1	1			3	1		1	3 100%
wisses												-	0	1 1	1			6	1	1	0	2 67%
vi N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>0</td><td>1 1 1 1</td><td>1</td><td></td><td></td><td>3</td><td>1</td><td></td><td>1</td><td>3 100% 2 67%</td></t<>												5	0	1 1 1 1	1			3	1		1	3 100% 2 67%
nm nm nm nm<												1	0 (0 0	0			8	0 0)	0	0 09
vi vi<											e	3	0 (0 0	0			7	1	1	0	2 67%
edit wissing	13	256	495.6829268	1029.877427	-38.51157317	333	200.825	656.69775	589			0	0	1 1	1	115	;	4	0 0)	0	0 0%
m m	14	650	495.6829268	1029.877427	-38.51157317	394	200.825	656.69775	256		5	5	0	1 1	1	115	5 1	1	1	1	0	2 67%
mm mm mm <		550				100					2	:6	0	1 1	1	115	5 1	2	1 ()	1	2 67%
mm mm <												5	0	1 1	1			0	1 (0	1 33%
mm mm<											4	0	0	1 1	1			5	0		0	2 67%
ndi 100 <td></td> <td>3</td> <td>0</td> <td>1 1</td> <td>1</td> <td></td> <td></td> <td>3</td> <td>0</td> <td>)</td> <td>0</td> <td>0 0%</td>												3	0	1 1	1			3	0)	0	0 0%
nd 0/2 <td></td> <td>2</td> <td>6</td> <td>0</td> <td>1 1</td> <td>1</td> <td></td> <td>;</td> <td>9</td> <td>1 (</td> <td>)</td> <td>0</td> <td>1 33%</td>											2	6	0	1 1	1		;	9	1 ()	0	1 33%
nmi nmi<		707									7	8	0	1 1	1			9	1	1	0	2 67%
nd <td>22</td> <td>314</td> <td>495.6829268</td> <td>1029.877427</td> <td>-38.51157317</td> <td>393</td> <td>200.825</td> <td>656.69775</td> <td>707</td> <td></td> <td>2</td> <td>1</td> <td>0</td> <td>1 1</td> <td>1</td> <td>105</td> <td>;</td> <td>7</td> <td>1 (</td> <td>)</td> <td>0</td> <td>1 33%</td>	22	314	495.6829268	1029.877427	-38.51157317	393	200.825	656.69775	707		2	1	0	1 1	1	105	;	7	1 ()	0	1 33%
mi <td>24</td> <td>455</td> <td></td> <td></td> <td></td> <td>141</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>.5</td> <td>0</td> <td>1 1</td> <td>1</td> <td>124</td> <td></td> <td>8</td> <td>1 (</td> <td>)</td> <td>0</td> <td>1 33%</td>	24	455				141					2	.5	0	1 1	1	124		8	1 ()	0	1 33%
n1 97 48 68.0079 69.079 6												9	0	1 1	1			3	0 ()	0	0 0%
m1 M2 M2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0 (</td><td>0 0</td><td>0</td><td></td><td></td><td>8</td><td>0 (</td><td>)</td><td>0</td><td>0 0%</td></t<>												1	0 (0 0	0			8	0 ()	0	0 0%
mm mm <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0 0</td><td></td><td>0 0</td><td></td><td></td><td>0</td><td>1 (</td><td>)</td><td>0</td><td>2 67%</td></t<>												0	0 0		0 0			0	1 ()	0	2 67%
m1 m1 m2 m2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>2</td><td>0 (</td><td>5 0 0 0</td><td>1</td><td></td><td></td><td>8</td><td>0 0</td><td>)</td><td>0</td><td>0 09</td></t<>											1	2	0 (5 0 0 0	1			8	0 0)	0	0 09
nd 102 458 458 458 1028 7027 381 701 70 7008 5677 567<											1	4	0 (0 0	0			3	1 ()	1	2 67%
ndi 103 405 805 805 805 655	/1	492	495.6829268	1029.877427	-38.51157317	97	200.825	656.69775	589		1	1	0 (0 0	0	112		8	1 ()	0	1 33%
m1 110 15	/2	655	495.6829268	1029.877427	-38.51157317	163	200.825	656.69775	492		1	1	0 (0 0	1	112	! 1	3	1 ()	1	2 67%
n1 10 ¹ 97 4668298 008772 4051737 01 6409 64097 0 1 1 1 0		593									3	5	0 (0 1	1			2	1	1	1	3 100%
ndi 100 400 <td></td> <td>1</td> <td>3</td> <td>0 (</td> <td>0 0</td> <td>0</td> <td></td> <td></td> <td>3</td> <td>1 (</td> <td>)</td> <td>1</td> <td>2 67%</td>											1	3	0 (0 0	0			3	1 ()	1	2 67%
101 103 46.84328 1026.772 36.8117371 148 200.87 64.975 44. 200.87 45.975 44. 200.87 45.975 44. 200.87 45.975 44. 200.87 45.975 44. 200.87 45.975 44. 200.87 45.975 44. 200.87 45.975 <td></td> <td>2</td> <td>27</td> <td>0 1</td> <td>1 1</td> <td>1</td> <td></td> <td></td> <td>9</td> <td>1 (</td> <td></td> <td>0</td> <td>1 33%</td>											2	27	0 1	1 1	1			9	1 (0	1 33%
np1 108 938 938 908.8739 938.11571 938 90.20 93.11571 93												2	0 1	1 1	1			2	1	1	1	2 67% 3 100%
np1 100 712 446.86280 102.8774 58.511537 32.6 666.975 71 67 <td></td> <td>2</td> <td>20</td> <td>0</td> <td> 1 1</td> <td>1</td> <td></td> <td></td> <td>6</td> <td>1 (</td> <td>)</td> <td>0</td> <td>1 33%</td>											2	20	0	 1 1	1			6	1 ()	0	1 33%
np1 101 28 49.83228 102.877 3.84117377 470 66.8375 78 101 10	/9	712	495.6829268	1029.877427	-38.51157317	324	200.825	656.69775	388		5	5	0	1 1	1	136	1	1	1	1	0	2 67%
1016 305 49582088 1028772 38511571 12 666875 23 11 12 0 0 0 0 16 0 16 0 0 16 0 16 0 <td>10</td> <td>761</td> <td>495.6829268</td> <td>1029.877427</td> <td>-38.51157317</td> <td>49</td> <td>200.825</td> <td>656.69775</td> <td>712</td> <td></td> <td>6</td> <td>57</td> <td>0 (</td> <td>0 0</td> <td>1</td> <td>127</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>2 67%</td>	10	761	495.6829268	1029.877427	-38.51157317	49	200.825	656.69775	712		6	57	0 (0 0	1	127	1	0	1	1	0	2 67%
1017 447 468 668 968 968 97 91		283					200.825				2	20	0 (0 0	1			5	0 ()	0	0 0%
vp2 1019 495 695 0 1 0 118 8 1 1 0 vp2 1019 362 495.682288 1029 7747 385117317 228 665.977 0 12 0 0 0 0 14 4 0 0 0 vp2 102 495.682288 1029 7747 385117317 72 200.22 666.977 0 1 0 0 0 14 4 0 0 0 vp2 102 495.682288 1029 7747 385117317 128 200.825 666.977 0 0 0 0 0 10 11 0 0 0 10 11 10 10 11 10 10 10 11 10 10 11 10 10 <							000 005		283		1	2	0 (0 0	0			8	0 ()	0	0 0%
np2 1019 362 496 862288 1028 7747 385 115737 248 200825 666 69775 1 0 0 0 0 101 0 0 0 0 101 0											2	5		0 0 1	0			8	1 (0	2 67%
np2 10/2 200 496.88298 1029, 7742 38.516737 72 20.082 666.977 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0											1	2	0 0		0			2	1 ()	1	2 67%
np2 1021 418 495.682926 1029.87747 -8.5115737 128 20.0825 656.6975 6 6 0 0 100 100 100 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0 (</td><td>0 0</td><td>0</td><td></td><td></td><td>4</td><td>0</td><td>)</td><td>0</td><td>0 09</td></t<>												1	0 (0 0	0			4	0)	0	0 09
vp210/298.049.68292.810.29.8774738.511573742.8200.82656.6975666 <th< td=""><td></td><td>418</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>2</td><td>0 (</td><td>0 1</td><td>0</td><td>110</td><td>1</td><td>1</td><td>1 (</td><td>)</td><td>0</td><td>1 33%</td></th<>		418									1	2	0 (0 1	0	110	1	1	1 ()	0	1 33%
vp2 10/2 727 495.682926 102.87747 38.51157317 113 20.0825 656.6975 6 442 1 0 1 0 1		412										6	0 (0 0	0	102		9	1 ()	0	1 33%
vp210/2749495.6829681029.877427-38.51153712220.0825656.6977564411 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>8</td><td>0 (</td><td>0 0</td><td>1</td><td></td><td></td><td>4</td><td>1</td><td>1</td><td>1</td><td>3 100%</td></th<>											5	8	0 (0 0	1			4	1	1	1	3 100%
wp210/26495.6829261029.877427-38.51157317118200.825665.6977511											4	2	1 (0 1	0			-	1		1	3 100%
wp210/27495.68292.6810/29.8774273.98.51157317112200.825656.697750565.697750565.697750011001151151151151101100111wp210/28495.68292.6810/29.8774273.85.1157317228200.825656.697750000001151151151151151101110											4	-3 2	1 (0			1	1		0	2 67% 1 33%
wp210/28444495.6829261029.877473.85.1153172.28200.825656.69775656.6977566900115151011											F	2	1 (0 1	0			0	1	1	0	2 67%
y210/2942495.829261029.87747												2	0 0	0 0	0			5	1 (1	2 67%
wp210/3777495.6829681029.877427-38.5115731794200.825666.097566		942									6	9	0 (0 1	0			6	1	1	1	3 100%
wp2111704495.6829681029.8774273.85.115731793200.825656.69775656.6977510910111101wp211/2661495.6829681029.8774273.85.115731743200.825656.69775656.697756666101111010wp211/3495.6829681029.8774273.85.115731743200.825656.6977566666101110101wp211/3495.6829681029.8774273.85.115731743200.825656.6977566666000010111000000000000000000	30	703									ŧ	60	1 (0 1	0	133	1	1	1	1	0	2 67%
wp211/2661495.68292681029.877427-38.5115731743200.825656.69775656.69775100100135110<											6	4	1 (0 1	0			0	1	1	0	2 67%
wp211/3421495.6829681029.87427-38.51157317240200.825656.69775656.69775000001101100000011											3	57	1 (0 1	0			1	1		0	2 67%
wp2 11/4 594 495.6829268 1029.877427 -38.51157317 173 200.825 656.69775 wp2 11/5 702 495.6829268 1029.877427 -38.51157317 108 200.825 656.69775 108 200.825 656.69775 108 200.825 656.69775 108 200.825 656.69775 108 200.825 656.69775 108 200.825 656.69775 108 109 101											4	5	1 (J 1	0		•		1		0	2 67%
wp2 11/5 702 495.6829268 1029.87747 -38.51157317 108 200.825 656.69775 108 200.825 1000000000000000000000000000000000000												7	0 0					6	1)	1	2 679
											1	5	0 (0 0	0			3	1 ()	1	2 67%
												7	0 (0 0	0			0	1 ()	0	1 33%
wp2 11/7 368 495.6829268 1029.877427 -38.51157317 69 200.825 656.69775 um2 11/8 F34 405.6829268 1029.877427 -38.51157317 69 200.825 656.69775 1 1 0 11/8 1 0 1 0 0 0 0 1 0												4	0 (0 0	0			8	1 ()	0	1 33%

Building a better workout routine MBC 638 Project: Problem Definition Musangi Muthui Syracuse University / Whitman School of Management / Fall 2019

The Business Driver

For this upcoming quarter, we want to focus on improving our workout routine to shorten time in the gym, maximize progress towards move goals and reap the health benefits of increased energy needed to tackle a busy schedule. Currently, morning workouts are based on alternating days of weights, cardio and yoga done over 45-60 minutes. But even with a schedule of 4-5 gym days per week, it's still hard to consistently hit all the key move targets tracked by our measurement device, an Apple iWatch. These health targets include:

- General activity as recorded by the iWatch Move goal
- Standing at least once every hour
- Workouts at an aerobic target heart rate (THR) of 128-147 bpm
- Daily calories burned.

Based on the latest research, shorter more intense workouts that include high intensity interval training (HIIT) can achieve the benefits of longer aerobic workouts including increased energy, heart health and overall well being associated with an active lifestyle. Currently, I have a weekly schedule that includes a mix of responsibilities that go on well past the usual 9-to-5 schedule. But by around 6pm, energy is fading, which makes it hard to be fully engaged and also makes freelance opportunities seem less attractive given a perception of not having enough time and energy for worthwhile projects.

For this workout improvement project, we will be leveraging data from an Apple iWatch that is worn daily during waking hours to understand how a shift in the workout process could address our issues of time management, goal attainment and available energy. We will be examining how shorter HIIT workouts have an impact on solving our current workout issues.

Business Impact

The overall value of fixing the current workout process over the course of this project include:

• Ability to select more effective workouts that reduce time at the gym while increasing effectiveness of each workout

• Achieve health benefits attained by working out more consistently and meeting the health targets above

• Increased energy leads to more efficient performance at work and university, and increases willingness to take on other activities.

It's predicted that time savings from less time at the gym and the associated increase in energy could free up about 5 hours a week of productive time. Leading a freelance digital project or UX workshop that requires a 20 hour investment each month, for example, is estimated to be worth \$2,500 in additional revenues per quarter.

Measurement Goals

We want to target the following in terms of measuring success of a streamlined workout process...

• Track and compare number of days all Move rings were closed using the old vs new workout processes

• Identify the impact of different types of workouts on daily calorie goals and THR

• Track perception of energy levels after 6pm and identify any correlations with move goal progress.

Project Scope

As we move through the MBC 638 live sessions, we want to build the detailed methods for collecting, measuring and analyzing key data from iWatch that we would need to assess the effectiveness of the updated workout process.

Team

I will serve as the process owner/champion and will be managing the project execution, process definition, data collection and analysis.

Timeline and Milestones: 10.01.19 - 12.16.19 Define: 10.01 - 10.17

- 10.01 Research kickoff
- 10.07 Project kickoff live session
- 10.10 Problem definition due
- 10.14 Weekly live session call
- 10.17 Refine process map

Measure: 10.18 - 11.24

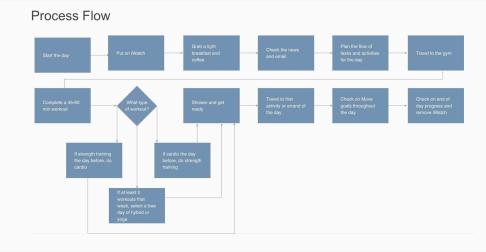
- 10.11 Initial data collection exercise
- 10.21 Weekly live session call
- 10.24 Hypothesis testing and preliminary measures
- 10.28 Weekly live session call
- 10.31 Perform chi-square test of independence
- 11.04 Weekly live session call
- 11.07 Define sample size and confidence intervals
- 11.11 Weekly live session call
- 11.12 Refine data collection as needed

Analyze: 11.13 - 11.21

•

•

- 11.14 Identify correlation(s) and create simple linear regression
- 11.18 Weekly live session call
- 11.21 Run multiple regression testing


Improve: 11.22 - 12-08

- 11.25 Weekly live session call
- 11.28 Build control charts and analyze signal vs noise
- 12.02 Weekly live session call
- 12.05 Refine forecasting model and prep final readout

Control: 12.13 and beyond

- 12.13 Deliver final readout for review
- 12.16 Wrap up live session call
- 01.01.2020 and beyond: Implement control phase plan

Process Flow

FULL ANALYSIS REPORT

Building a better workout routine

MBC 638 Data Analysis & Decision Making Process Project Musangi Muthui Syracuse University / Whitman School of Management / Fall 2019

Executive Summary

Problem Definition

For this upcoming quarter, we wanted to focus on improving our workout routine to shorten time in the gym, maximize progress towards daily move goals and reap the health benefits of increased energy needed to tackle a busy schedule.

It's predicted that time savings from less time at the gym and the associated increase in energy could free up about 5 hours a week of productive time. Leading a freelance digital project or UX workshop that requires a 20 hour investment each month, for example, is estimated to be worth \$2,500 in additional revenues per quarter.

We wanted to target the following in terms of measuring success of a streamlined workout process:

1.Track and compare number of days all Activity rings (Move kcal, Stand hrs and Exercise min) were closed using the old vs new workout processes

2. Identify the impact of different workout types on daily calorie goals (Move)

3.Gain insights to select more effective workouts that reduce time at the gym while increasing effectiveness of each workout

4.Confidently raise our daily Move goal from 350 to 450 kcal based on effectiveness of the new process

DMAIC Storyboard

Define

Given an increasingly busy schedule, we wanted to find a way to have a more efficient workout process that enabled us to meet our Move target, and setup for success an ongoing process where we could reduce workout time while simultaneously raising the daily Move goal from 350 kcal to 450 kcal.

Our y = f(x) had y as the Move data point where x consisted of several variables measuring exercise time and workout type. For project kickoff, we created a problem definition worksheet that outlined a high-level summary of the problem to be studied, the business impact of solving this problem and a timeline for data collection and analysis.

Our hypothesis was as follows...

H0: Shorter HIIT workouts will have no effect on Move goals when compared to regular full-length cardio workouts. ($\mu 1 = \mu 2$)

Ha: Shorter, higher intensity workouts will have a positive impact on daily Move goals when compared to regular full-length cardio workouts. (μ 1 < μ 2)

For this data set, we will use an alpha of $\alpha = 0.10$ and a series of tools including summary charts, multiple regression, time series analysis, histograms and measures of central tendency. For this continuous data set, our $\alpha = 0.10$. The sample size and dual data sets indicate an upper/right one-tail test would be most appropriate.

Measure

For this workout improvement project, we leveraged data from an Apple iWatch that is worn daily during waking hours to understand how a shift in the workout process could address our issues of time management, goal attainment and available energy. Data was extracted from the Apple Health app.

In the initial workout process (WP1), workouts consisted of the following:

- 45 min cardio session on an incline treadmill
- 10-15 min of strength training
- \cdot 10-15 min modified yoga using seated poses and the sauna when available

To measure whether shorter, higher intensity workouts would have an impact on solving our current workout issues, we modified the workout process (WP2) as follows:

• 15 min cardio session on an elliptical machine

- 10-15 min of strength training
- 10-15 min modified yoga using seated poses and the sauna when available

45 days of Activity data was to collected for 8.31 to 10.15 (WP1) and 10.16 to 11.30 (WP2).

Performance measures: Move goal achieved (kcal = 350); # of Activity rings closed; and, three Activity rings were closed

Questions about the process...

• Does a shorter, higher intensity workout have an impact on the Move goal versus workouts cardio set?

• Which workout type had the most impact on the Move goal?

• Which workout type, or mix, has the most potential to help us meet an elevated Move target in the future?

Analyze

We found that of all the x variables, exercise time, strength training and yoga were strongly conhad a statistically significant impact on the y variable, Move, at alpha = 0.10. Just meetin Exercise goal of 30 min with any single workout or mix of workouts was the strongest predic goal success.

Exercise time, strength training and yoga were strongly correlated and had a statistically signified on the y variable, Move, at $\alpha = 0.10$. Therefore, we reject the null hypothesis, $\mu 1 = \mu 2$ a shorter, higher intensity workouts had a positive impact on the Move goal ($\mu 1 < \mu 2$).

This was not a linear relationship and we suspect this is due to the complex mix of factors grade, indoor vs outdoor, time, distance, etc.) that go into estimating calorie burn (Move) workout types.

The x variable average heart rate was removed after initial regression analysis as it had no in Move goal. We ran the regression again and the remainder of our project analysis focuse variables of exercise time and our four workout types (strength training, yoga, elliptical and wal

Improve

Even though we didn't have scope to improve the process beyond the findings from WP2, we to gain some valuable insights and identify some process optimization scenarios for the future confident that this new process allows us to raise the daily Move goal from 350 kcal to 450 kc number of scenarios described previously, and with Exercise time remaining constant at 30 min

For our regression formula y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5, we used the followin predict several possible scenarios that can be explored in the Improve phase: y = 391.97 + 7.25x1 - 76.84x2 - 68.08x3 - 7.72x4 + 19.10x5

Control

We would take samples of data throughout the year. Our goal is to make the data extraction p the health app more streamlined so we can move from an initial target of twice a year to on and eventually have a robust weekly dashboard so we can adjust quickly to any changes performance. For the Control phase, we will leverage the Xbar/R and IMR charts created dur series analysis of WP1 and WP2 performance.

Deep Dive Analysis

How we re-engineered the process (as-is vs to-be adjustments)

In the initial workout process (WP1), workouts consisted of the following:

- 45 min cardio session on an incline treadmill
- 10-15 min of strength training
- 10-15 modified yoga using seated poses and the sauna when available

To measure whether shorter, higher intensity workouts would have an impact on solving workout issues, we modified the workout process (WP2) as follows:

- 15 min cardio session on an elliptical machine
- 10-15 min of strength training

.

10-15 modified yoga using seated poses and the sauna when available

What we did (measurement plan)

For this workout improvement project, we leveraged data from an Apple iWatch that is worn daily during waking hours to understand how a shift in the workout process could address our issues of time management, goal attainment and available energy.

Predicting the Future

When using our regression formula to explore several scenarios, all scenarios have the potential to get us to the 450 kcal Move goal. The predicted 500+ kcal for a large number of scenarios suggests we could consider shifting the Move goal even higher in the future without adding more workout time to the process.

Looking Forward

What we would improve

How can we optimize the process even further to continue on our path of reducing time at the gym while still reaping the health benefits of regular activity?

• Our regression analysis shows that with this new process, we should be able to consistently meet a higher Move target (kcal = 450) and then measure our process management at a subsequent control interval.

• Since we are meeting our daily Exercise goal of 30 min, we could explore reducing the cardio even further from 15 min to 10 min and then measure whether we're still attaining positive Activity results consistently.

• Shorter workout also making working out more approachable ensuring we're consistently moving and staying active most, if not all, days in a week.

• We should also explore other forms of cardio to keep workouts interesting, and measure how well those workout types contribute to the overall process.

What we could explore

There are additional analysis we could build upon to further optimize the workout process. A few data analysis objectives for a future assessment could include the following:

Is there an impact to overall movement during the day (e.g., stand goal) on workout vs. non-workout ays?

Which workout type has the most potential to meet the target heartrate goal for the workout duration?Do the number of steps through the day (workout and non-workout days) have an impact on the Move goal?

How we would control the process

Business Impact: The overall business impact of fixing the current workout process over the course of this project included:

• Ability to select more effective workouts that reduce time at the gym while increasing effectiveness of each workout

- Achieve health benefits attained by working out more consistently and meeting the health targets above
- Increased energy leads to more efficient performance at work and university, and increases willingness to take on other activities.

Moving forward, we will continue to implement our revamped WP2 process, and continue obtaining daily Activity data. To make the measurement process simple, we could take 30 days of data at the end of Q2 and Q4 to see if the process is continuing as expected, and assess whether one of our test scenarios has a significant enough impact that it warrants consideration as part of a WP3 refined process.

We will also explore ways to automate the data export. Currently, there is no simple process for converting the XML export of Apple Health data to a readable Excel file. A few apps exist but we didn't find they gave us the granularity needed to perform statistical analysis, or just didn't work at all. The file itself is massive and tended to crash online XML parsing sites, so for this project we had to hand enter the data from the Health app into an Excel table.

This data export challenge may be due to some incompatibilities with the HealthData XML data type. However, based on research done during the measure phase, and with a bit of coding magic, we may be able to build an XML parsing function using PHP or Python. This would convert the Health data export into an HTML table that can more easily be transferred to Excel for analysis ,or even analyzed on the HTML page as a dynamic dashboard.

This trend suggests we've found a process that could enable us to successfully raise our Move goal from 350 kcal to 450 kcal without sacrificing Move success rate.

time at the gym while to consistently meet a a subsequent control lucing the cardio even positive Activity results onsistently moving and easure how well those

it process. A few data prkout vs. non-workout e workout duration? an impact on the Move

over the course of this easing effectiveness of e health targets above d increases willingness

THANK YOU

